Similarities Between Job-Order and Process Costing

- Both systems assign material, labor, and overhead costs to products and they provide a mechanism for computing unit product costs.
- Both systems use the same manufacturing accounts, including Manufacturing Overhead, Raw Materials, Work in Process, and Finished Goods.
- The flow of costs through the manufacturing accounts is basically the same in both systems.

Differences Between Job-Order and Process Costing

Process costing:

- Is used when a single product is produced on a continuing basis or for a long period of time. Job-order costing is used when many different jobs having different production requirements are worked on each period.
- 2. Systems accumulate costs by department. Job-order costing systems accumulated costs by individual jobs.
- 3. Systems compute unit costs by department. Job-order costing systems compute unit costs by job on the job cost sheet.

Quick Check ✓

Process costing is used for products that are:

- a. Different and produced continuously.
- b. Similar and produced continuously.
- c. Individual units produced to customer specifications.
- d. Purchased from vendors.

Process costing is used for products that are:

- Different and produced continuously.
 - Similar and produced continuously.
- Individual units produced to customer specifications.
- Purchased from vendors.

Processing Departments

Any unit in an organization where materials, labor, or overhead are added to the product.

The activities performed in a processing department are *performed uniformly* on all units of production.

Furthermore, the output of a processing department must be *homogeneous*.

Products in a process costing environment typically flow in a sequence from one department to another.

Learning Objective

Record the flow of materials, labor, and overhead through a process costing system.

The Flow of Materials, Labor, and Overhead Costs

The Flow of Costs in a Job-Order Costing System

T-Account and Journal Entry Views of Process Cost Flows

For purposes of this example, assume there are two processing departments – Departments A and B. We will use T-accounts and journal entries.

Process Cost Flows: The Flow of Raw Materials (in T-account form)

Process Cost Flows: The Flow of Raw Materials (in journal entry form)

Work in Process - Department A	XXXXX	
Work in Process - Department B	XXXXX	
Raw Materials		XXXXX

Process Cost Flows: The Flow of Labor Costs (in T-account form)

Process Costing: The Flow of Labor Costs (in journal entry form)

Work in Process - Department A	XXXXX	
Work in Process - Department B	XXXXX	
Salaries and Wages Payable		XXXXX

Process Cost Flows: The Flow of Manufacturing Overhead Costs (in T-account form)

Process Cost Flows: The Flow of Manufacturing Overhead Costs (in journal entry form)

Work in Process - Department A	XXXXX	
Work in Process - Department B	XXXXX	
Manufacturing Overhead		XXXXX

Process Cost Flows: Transfers from WIP-Dept. A to WIP-Dept. B (in T-account form)

Process Cost Flows: Transfers from WIP-Dept. A to WIP-Dept. B (in journal entry form)

Work in Process - Department B	XXXXX	
Work in Process - Department A		XXXXX

Process Cost Flows: Transfers from WIP-Dept. B to Finished Goods (in T-account form)

Process Cost Flows: Transfers from WIP-Dept. B to Finished Goods (in journal entry form)

Finished Goods	XXXXX	
Work in Process - Department B		XXXXX

Process Cost Flows: Transfers from Finished Goods to COGS (in T-account form)

Process Cost Flows: Transfers from Finished Goods to COGS (in journal entry form)

Cost of Goods Sold	XXXXX	
Finished Goods		XXXXX

Equivalent Units of Production

Equivalent units are the product of the number of partially completed units and the percentage completion of those units.

These partially completed units complicate the determination of a department's output for a given period and the unit cost that should be assigned to that output.

Equivalent Units – The Basic Idea

Two half completed products are equivalent to one complete product.

So, 10,000 units 70% complete are equivalent to 7,000 complete units.

Quick Check ✓

For the current period, Jones started 15,000 units and completed 10,000 units, leaving 5,000 units in process 30 percent complete. How many equivalent units of production did Jones have for the period? 10000+5000x30% = 11500

- a. 10,000
- b. 11,500
- c. 13,500
- d. 15,000

Calculating Equivalent Units

Equivalent units can be calculated two ways:

The First-In, First-Out Method – FIFO is covered in the appendix to this chapter.

2 The Weighted-Average Method – This method will be covered in the main portion of the chapter.

Equivalent Units of Production Weighted-Average Method

The weighted-average method . . .

- 1. Makes no distinction between work done in prior or current periods.
- 2. Blends together units and costs from prior and current periods.
- Determines equivalent units of production for a department by adding together the number of units transferred out plus the equivalent units in ending Work in Process Inventory.

Type of Product Cost

Direct labor and manufacturing overhead may be combined into one classification of product cost called conversion costs.

Weighted-Average – An Example

Smith Company reported the following activity in the Assembly Department for the month of June:

	_	Percent Completed		
	Units	Materials	Conversion	
Work in process, June 1	300	40%	20%	
Units started into production in June	6,000			
Units completed and transferred out of Department A during June	5,400			
Work in process, June 30	900	60%	30%	

Weighted-Average – An Example

The first step in calculating the equivalent units is to identify the units completed and transferred out of Assembly Department in June (5,400 units)

	Materials	Conversion
Units completed and transferred out of the Department in June	5,400	5,400

Beginning Work in Process Inventor	y: 300 units
Materials: 40% complete \$	6,119
Conversion: 20% complete \$	3,920
Production started during June	6,000 units
Production completed during June	5,400 units
Costs added to production in June	
Materials cost	\$ 118,621
Conversion cost	\$ 81,130
Ending Work in Process Inventory: Materials: 60% complete Conversion: 30% complete	900 units

The formula for computing the cost per equivalent unit is:

Cost per equivalent = unit	Cost of beginning Work in Process + Inventory	Cost added during the period
	Equivalent units	of production

Here is a schedule with the cost and equivalent unit information.

	Total Cost	Materials	Conversion
Cost to be accounted for: Work in process, June 1 Cost added in Assembly Total cost			
Equivalent units			

Here is a schedule with the cost and equivalent unit information.

Cost per equivalent unit = \$21.00 + \$15.00 = \$36.00

Learning Objective

Assign costs to units using the weightedaverage method.

Applying Costs

Assembly Department			
Cost of Ending WIP Inventory and Units Transferred Out			
	Materials	Conversion	Total
Ending WIP inventory:			
Equivalent units	540	270	

Applying Costs

Asse Cost of Ending WIP In	mbly Depa ventory ar	artment nd Units	Trans	sferred Ou	ıt
	Ма	aterials	Con	version	Total
Ending WIP inventory:					
Equivalent units		540		270	
Cost per equivalent unit	\$	21.00	\$	15.00	

Applying Costs

Assem	oly Dep	artment				
Cost of Ending WIP Inve	ntory a	nd Units	Tran	sferred O	ut	
	M	aterials	Cor	nversion		Total
Ending WIP inventory:						
Equivalent units		540		270		
Cost per equivalent unit	\$	21.00	\$	15.00		
Cost of Ending WIP inventory	\$	11,340	\$	4,050	\$	15,390

Computing the Cost of Units Transferred Out

Assembly [Dep	artment				
Cost of Ending WIP Inventor	'y a	nd Units	Trans	sferred O	ut	
	M	aterials	Cor	version		Total
Ending WIP inventory:						
Equivalent units		540		270		
Cost per equivalent unit	\$	21.00	\$	15.00		
Cost of Ending WIP inventory	\$	11,340	\$	4,050	\$	15,390
Units completed and transferred out:						
Units transferred		5,400		5,400		

Computing the Cost of Units Transferred Out

Assembly [Эер	artment				
Cost of Ending WIP Inventor	ry a	nd Units	Trans	sferred O	ut	
	Μ	aterials	Cor	version		Total
Ending WIP inventory:						
Equivalent units		540		270		
Cost per equivalent unit	\$	21.00	\$	15.00		
Cost of Ending WIP inventory	\$	11,340	\$	4,050	\$	15,390
Units completed and transferred out:						
Units transferred		5,400		5,400		
Cost per equivalent unit	\$	21.00	\$	15.00		

Computing the Cost of Units Transferred Out

Assembly	Эер	artment				
Cost of Ending WIP Invento	ry a	nd Units	Tran	sferred O	ut	
	Μ	aterials	Со	nversion		Total
Ending WIP inventory:						
Equivalent units		540		270		
Cost per equivalent unit	\$	21.00	\$	15.00		
Cost of Ending WIP inventory	\$	11,340	\$	4,050	\$	15,390
Units completed and transferred out:						
Units transferred		5,400		5,400		
Cost per equivalent unit	\$	21.00	\$	15.00		
Cost of units transferred out	\$	113,400	\$	81,000	\$	194,400

Learning Objective

Prepare a cost reconciliation report.

Reconciling Costs

Assembly Department	
Cost Reconciliation	
Costs to be accounted for:	
Cost of beginning Work in Process Inventory	\$ 10,039
Costs added to production during the period	199,751
Total cost to be accounted for	\$ 209,790

Reconciling Costs

\$ 10,039
199,751
\$ 209,790
\$ 15,390
194,400
\$ 209,790
\$ \$ \$